Parametric estimation in autoregressive processes under quasi-associated random errors
نویسندگان
چکیده
منابع مشابه
Time-frequency-autoregressive random processes: modeling and fast parameter estimation
We present a novel formulation of nonstationary autoregressive (AR) models in terms of time-frequency (TF) shifts. The parameters of the proposed TFAR model are determined by “TF Yule-Walker equations” that involve the expected ambiguity function and can be solved efficiently due to their block-Toeplitz structure. For moderate model orders, we also propose approximate TF Yule-Walker equations t...
متن کاملOn periodic autoregressive processes estimation
We consider the autoregressive estimation for periodically correlated processes, using the parameterization given by the partial autocorrelation function. We propose an estimation of these parameters by extending the sample partial autocorrelation method to this situation. The comparison with other methods is made. Relationships with the stationary multivariate case are discussed.
متن کاملEstimation in nonstationary random coefficient autoregressive models
We investigate the estimation of parameters in the random coefficient autoregressive model Xk = (φ+ bk)Xk−1 + ek, where (φ,ω 2, σ2) is the parameter of the process, Eb0 = ω2, Ee0 = σ 2. We consider a nonstationary RCA process satisfying E log |φ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi-maximum likelihood method. The asymptotic normality of the quasi-maximum likelihood estimat...
متن کاملEstimation in Random Coefficient Autoregressive Models
We propose the quasi-maximum likelihood method to estimate the parameters of an RCA(1) process, i.e. a random coefficient autoregressive time series of order 1. The strong consistency and the asymptotic normality of the estimators are derived under optimal conditions.
متن کاملShrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2016
ISSN: 1631-073X
DOI: 10.1016/j.crma.2015.10.008